

Development of a DfAM Worksheet for Medical Casts Heena No^{1*}, Hanna Kim¹, Jisoo Choo¹

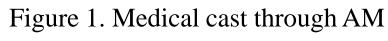
¹Department of Industrial and Management Engineering, Incheon National University, Incheon, Korea Research Advisor: Kijung Park

*e-mail:nhn@inu.ac.kr

INTRODUCTION

PRELIMINARILY RESULTS

Additive Manufacturing (AM)


- Creates 3D objects by depositing material layer by layer
- Various materials for industrial applications
- Can fabricate a part with complex geometries \rightarrow Mass personalization
- Fused Filament Fabrication (FFF) is a representative AM technique **Existing Studies for DfAM Guidelines**
- Design for Additive Manufacturing (DfAM) prevents possible errors or mistakes in 3D printing

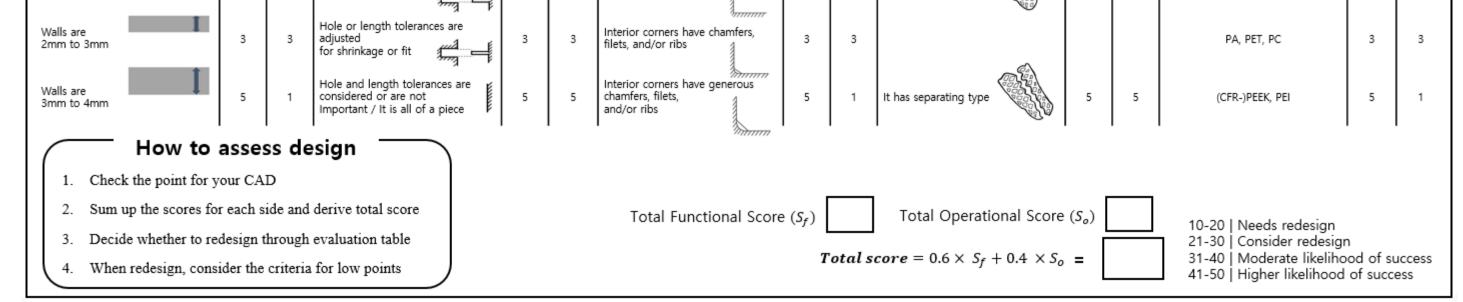
Medical Cast Design Worksheet for AM ($w_f = 0.6, w_o = 0.4$)

Compression Output will shrink and should be made slightly larger	Funct- ional Score	Opera- tional Score	Contact Surface Support is necessary for preventing sagging but not designed to contact the user's skin	Funct- ional Score	Opera- tional Score	Hole Size	Funct- ional Score	Opera- tional Score	Hole Pattern The more polygons, the weaker the durability	Funct- ional Score	Opera- tional Score	Functionality AM parts are light and medium duty	Funct- ional Score	Opera tiona Score
It is designed the size is larger than 6%	1	1	Support is required but not added	1	1	Wide hole is made in the all areas	1	5	Hole pattern is honeycomb	1	5	Mating surfaces are bearing surfaces	1	5
It is designed the size is 0 to 1% larger	3	5	Support is made inside	3	3	Tight hole is made in the all areas	3	1	Hole pattern is grid	3	3	Mating surfaces will move minimally	3	3
It is designed the size is 1% to 6% larger	5	3	Support is made outside	5	5	Tight hole is made in the parts requiring fixation	5	3	Hole pattern is triangular	5	1	Surfaces are purely non-functional or experience virtually no cycles	5	1
		F		-	F		-	ł		-	+			÷
Strength	Funct- ional	Opera- tional	Tolerances	Funct- ional	Opera- tional	Stress Concentration	Funct- ional	Opera- tional	Convenience	Funct- ional	Opera- tional	Material	Funct- ional	Ope tior
Thick wall keeps holding up	Score	Score	Mating parts should not be the same size Score		Score			Score	The detachable type is easy to wear and clean	Score	Score	High performance materials have high strength	Score	Sco
Walls are less than 2mm	1	5	Hole or length dimensions are nominal	1	1	Interior corners have no chamfers, filets, and/or ribs	1	5	It is all of a piece	1	1	HIPS, ABS, PLA	1	

- Mostly require prior knowledge in AM
- Focus on AM process parameter setting values **Increasing Need of AM for Medical Casts**
- Air permeability and wash-ability to prevent dermatitis
- Lightweight with high strength

triendly cast

OBJECTIVES


Development of Cast Design Worksheet for AM

- Medical casts manufactured by AM can be freely customized for user needs.
- A practical design framework is required to provide proper design guidelines for the additive manufacturing of a medical cast at an early design stage
- This study proposes a practical DfAM worksheet for medical casts to evaluate their suitability for AM through FFF

METHODOLOGY

Step 1: Defining Criteria of a DfAM Worksheet for Medical Casts

Key studies relevant to AM for medical casts were reviewed to extract 20 important design considerations for AM

Figure 5. Proposed medical cast design worksheet

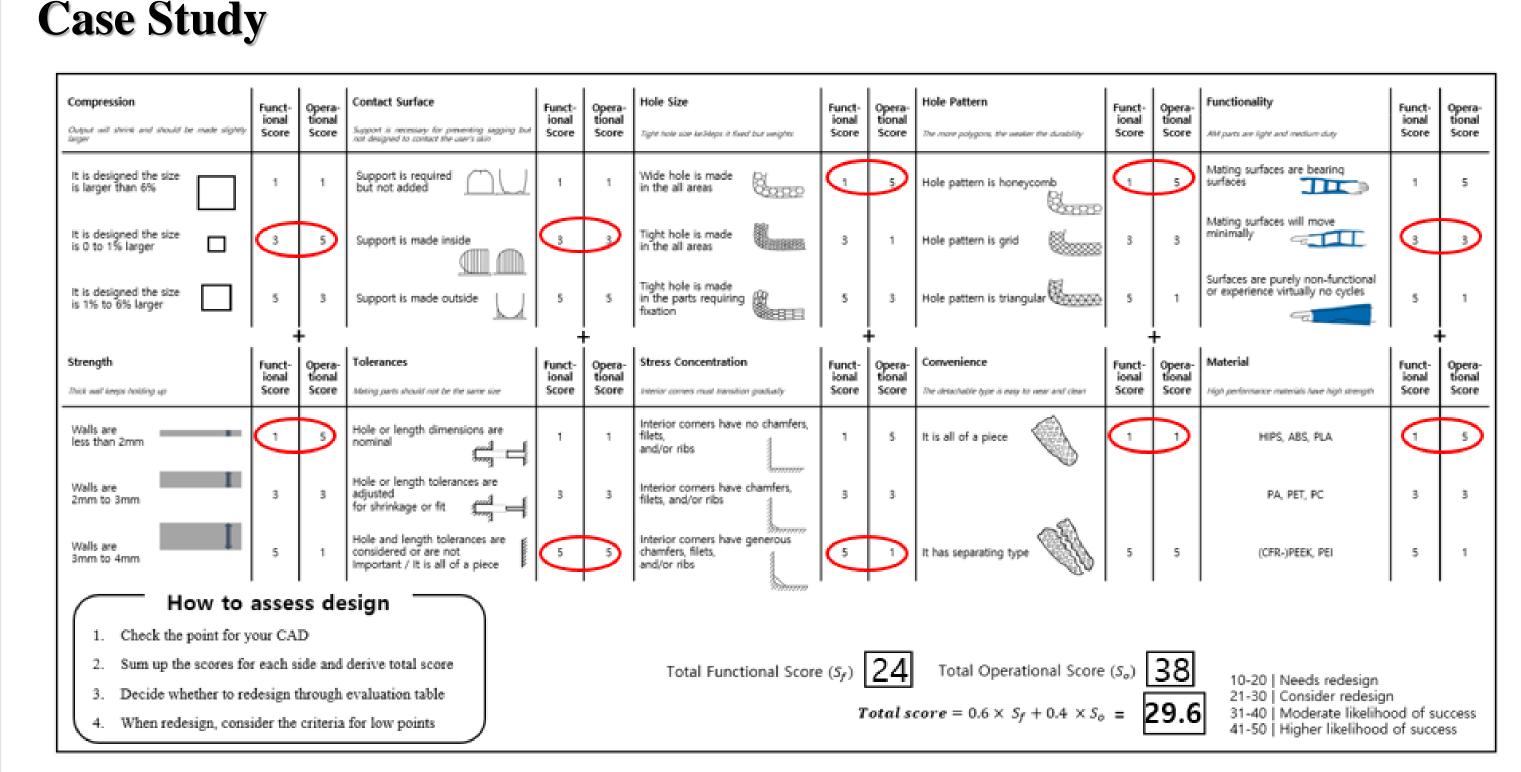


Figure 6. Assessment of case study before worksheet using

- Total score is 29.6 points : the design has to be redesigned for AM lacksquare
- The common DfAM factors identified in Booth et al. (2017) were revised by considering the identified DfAM factors for medical casts
- Finally, 10 DfAM criteria for medical casts were derived and defined (i.e., Compression, Contact surface, Hole size, Hole pattern, Functionality, Strength, Tolerances, Stress Concentration, Convenience, and Material)

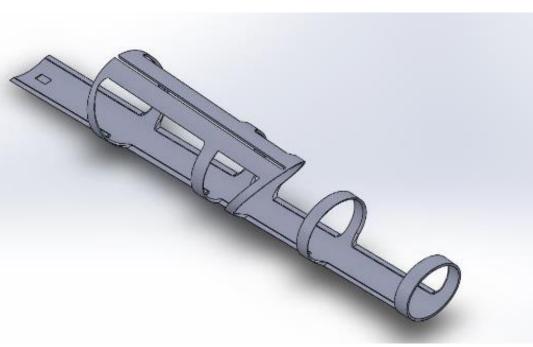
*Ref.: Booth, J. W., Alperovich, J., Chawla, P., Ma, J., Reid, T. N., & Ramani, K. (2017). The design for additive manufacturing worksheet. Journal of Mechanical Design, 139(10).

Step 2: Development of a Score System

- Functional score (S_f) : Degree of satisfaction in user requirements and printing quality
- Operational score (S_o) : Degree of printing time and cost
- Each DfAM criterion has two or three score levels based on design characteristics defined in the worksheet
- $S_f(total functional score) = \sum f_i S_o(total operational score) = \sum o_i$ (*i*=criterion, *f*=functional score, *o*=operational score)
- Total score = $w_f \times S_f + w_o \times S_o$; $w_f + w_o = 1$ (<30 points \rightarrow Redesign) (w_f : weight of total functional score, w_o : weight of total operational score) **Step 3: Application of Proposed DfAM worksheet (Case Study)**

- Although operational performance is good, redesign is required in terms of functional performance

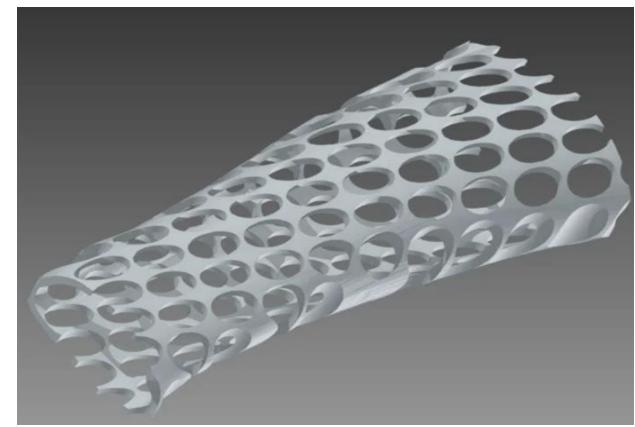
DISCUSSION AND FUTURE WORK


DfAM Worksheet for Medical Casts

- Available to see considerations for medical cast design at once
- Objectively and quantitatively assesses the suitability of medical cast designs for AM
- Consider both functional and operational aspects in DfAM
- Reduces wasted material and time by evaluating the CAD design before medical cast printing
- Novices even can make casts using developed framework

Future Work

- The proposed worksheet will be improved to apply Analytic Hierarchy lacksquareProcess (AHP) to the evaluation process to derive the relative weights of functional score and operational score
- A redesign guideline process will be devised to provide a systematic \bullet redesign process based on the proposed worksheet


- Perform a case study to verify the effectiveness of the DfAM worksheet - Subject : Undergraduate project team taking the CAD/CAM class
- The team performed a term-project to create a medical cast design to be printed for AM

• Case study process:

- Figure 4. Initial Medical Cast Design
- Evaluate the initial CAD model through the proposed DfAM worksheet
- Derive guidelines for redesign to improve low scored criteria
- Print two samples: initially designed cast and redesigned cast
- Compare the printing outputs (material consumption and total build time) and worksheet score
- Conduct a user survey for the cast samples

- A redesigned CAD model will be built to improve the initial cast design \bullet
 - Example:

	Befor	re Using Worksheet	After Using Worksheet					
	Total Score		Total Score					
worksheet	Functional Score	24 (Consider redesign)	Functional Score					
	Operational Score	38 (Moderate likelihood of success)	Operational Score					
Simplify 3D	Used Material		Used Material					
	Printing Time		Printing Time					
Survey								
Design		0						

Figure 7. Expected design (Thingiverse)

Figure 8. Comparison before and after using of worksheet

Application

Developed framework can be applied to a reference for developing casts that meet the needs of user and used to evaluate the existing casts